stepper etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
stepper etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster

12 Ekim 2014 Pazar

Montaj aşamaları, 6. adım: Z gijonu - motor bağlantısının gerçekleştirilmesi

Sigma 3D yazıcımızın montajında oldukça basit görünmekle birlikte, baskı kalitesi üzerinde çok belirgin etkisi olabilecek bir aşamaya gelmiş bulunmaktayız. En son montaj aşamamızda Z asansörlerine yerlerine takmıştık. Z asansörleri yazma kafasını Z yönünde, yani yukarı-aşağı yönde hareket ettirecek parçalar. Bu hareketi sağlayacak olan yapılar ise tabii ki motorlar. Motorlarla ilgili yazımızdan hatırlayabileceğiniz gibi yazıcımızda stepper motorlar kullanılıyor ve bu motorların kendilerine ait milleri var. Bu millerin gijonlar ile bağlantılarının kurulması gerekiyor, yoksa motorun dönme hareketini gijona aktarmamız mümkün olmaz. Bu aktarma işlemini yapan parçaya kaplin adı veriliyor. Kaplinler ile ilgili plastik parçalar bölümünde kısa bir bilgi vermiştim. İsterseniz tekrar hatırlayalım: Kaplin, İngilizce "coupling" kelimesinden geliyor ve anlamı birleştirmek-eşleştirmek. Yaptığı şey de zaten iki ayrı parçayı birbirine bağlamak.

Kitimizin içerisinden Z gijonu ile Z motoru arasında bağlantı için iki farklı kaplinden birisi çıkmış olabilir. Benim satın aldığım kitte aşağıda resmini görebileceğiniz plastik kaplin ve aksesuarları yer alıyordu:


Plastik kaplinlere ek olarak iki adet kaplin hortumu, M3x15 imbuslar ve M3 somunlar montajda kullanılıyor. Şimdi burada akla şöyle bir soru gelebilir: İki cismi birbirine bağlamak için bu kadar parçaya ne gerek var? Bu noktada ilk problemimizi ortaya koyarak açıklamaya başlayalım: Motor şaftımızın kalınlığı ile gijonun kalınlığı aynı değil. Motor şaftımız yaklaşık 5 mm çapa sahip iken, gijon M8 boyutunda, yani 8 mm çapa sahip..Bu durumda iş biraz karışıyor çünkü bağlantıda kullanacağımız yapı her ikisine de uyum göstermek zorunda. Kitimizde bu amaçla kaplin hortumundan faydalanılıyor. Kaplin hortumunu motor şaftına geçirerek şaftın çapını arttırıyoruz, bu sayede gijon ile aynı kalınlığa geliyor. Hortum yerine izolatör bant da sarılabilir ama yeterince sağlam olmayabilir.Kaplin hortumunu yerleştirdikten sonra motor şaftı aşağıdaki gibi görünüyor:


Resimde görülebildiği gibi hortumu yerleştirdiğimizde çaplar eşitleniyor. Ama hala dönüş hareketini aktarabilme imkanı yok çünkü birbirlerine bağlı değiller. Bu bağlantıyı yapmak için plastik kaplin parçalarının üzerlerindeki uygun deliklere M3 somunları yerleştiriyoruz (her parça yüzünde iki tane altıgen bölge var, o kısımlara yerleştireceğiz):


Bundan sonra plastik parçaları yerlerine takıp birleştireceğiz. Resimde de görebileceğiniz gibi plastik parçalarda yukarı yönü gösteren bir ok var, parçaların o tarafları yukarıya bakacak (parçanın iç tarafındaki oluğun çapları buna göre tasarlanmış).


Kaplini bağlantısı ile ilgili iki farklı görüş hakim. Bunlardan biri gijonun motor miline temas edeceği şekilde bağlantının yapılması:


  Resimde çok iyi gözükmüyor olabilir ama kaplinin içine baktığımız zaman gijon ile milin temas ettiğini görebiliriz. Bu yöntem nispeten daha kolay ama bazı eleştirilere maruz kalabiliyor. Eğer motor mili veya gijonda kesim noktalarında eğrilik varsa, bu eğrilik sebebiyle gijon yalpalamaya başlayabiliyor. Gijonun yalpalaması demek, Z asansörünün düz bir şekilde yukarı çıkması yerine, hafif oynamalar yaparak yukarı çıkması demek, ki bu da baskı kalitesini düşürüyor. Ayrıca gijonun sürekli mil ile temas halinde olmasının motor şaftı üzerinde baskı yaparak uzun dönemde şaftın eğilmesine yol açabileceğini belirtenler de var. Bu ikinci seçenek ne kadar olası bilmiyorum ancak ilk seçenek sebebiyle ben araya az bir miktar boşluk koymayı tercih ettim. Kaplini vidalarken gijonu çok küçük bir miktar yukarı kaldırıp o şekilde sıkıştırıyorum.

Plastik kaplin yerine kullanabileceğimiz alternatifler var. Bunlardan birisi normalden daha uzun bir somun şeklinde tarif edebileceğim, M8 çapa sahip bir bağlantı somunu:

  
Bu çözümü kullanmayı denedim ancak çok başarılı sonuç alamadım. Parça metal olduğundan tabii ki plastik parçaya kıyasla daha dayanıklı ama mil ile gijon arasındaki çap farklılığına sunduğu bir çözüm yok. Mile bant sarmak veya kaplin hortumunu kullanmak zorundayız. Ayrıca gijon somuna vidalandığında gijonun tam sabitlenmediğini, hafif oynayabildiğini görüyoruz (backlash mekanizmasına benzer bir sebepten dolayı).

Başka bir çözüm, metal kaplinleri kullanmak. Metal kaplinin sunduğu bazı avantajlar (ve tabii dezavantajlar) var. Aşağıdaki resimde bir metal kaplin ile bağlantı yapılmış hareketli aksamı görebilirsiniz:


Bu parçanın iki özelliği var: Birincisi iki ucundaki delikler farklı çapa sahip. Yani üstte kalan delik 8 mm, altta kalan delik 5 mm çaplı. Bu sayede gijon ve mil arasındaki çap farkı sorunu ortadan kalkmış oluyor.İkinci özelliği ise, parçanın bir yay gibi tasarlanmış olması. Parçanın orta kısmındaki spiral tasarım sayesinde parça sağa sola doğru esneme yapabiliyor. Bu, ilk başta sanki istenmeyecek bir özellikmiş gibi dursa da, milde veya gijonda bulunabilecek çok küçük miktardaki eğrilikleri kompanse edebilecek bir mekanizma sağlıyor.Tamamen katı bir parça ile bağlantı yapıldığında, bu tip eğrilmelerin etkileri katlanarak yukarıya doğru aktarılırken, yaylanabilen kaplinler kendileri bükülerek bu eğriliğin etkisini azaltıyorlar. Bu tip kaplinlerin bence en büyük sorunu ise gijonu kapline bağlamak için kullanılan setskurların (setskur, yukarıdaki resimde üstteki deliklerin içinde görebileceğimiz, başı olmayan vidalara verilen isim), gijonun dişlisinin spiral şekli sebebiyle gijonu iyi bir şekilde sıkıştıramaması, hatta bir yöne doğru eğme eğilimi göstermesi. Bu problemi çözmek için gijonun kapline giren kısmına kapton veya türevi bir bant sararak yüzeyini düzleştirmek bir seçenek olabilir. Daha iyi ancak yapması güç olan bir teknik de kaplin içine girecek olan dişlilerin torna benzeri bir alette traşlanmaları ve düzleştirilmeleri. Bu sayede gijonun bu kısmı bir mil kadar pürüzsüz hale getirilebiliyor.

Kaplinlerimizin montajını yaptıktan sonra gijonları daha sabit bir pozisyona sokmak için ek bir aşamamız daha var. Ben şu anda bu aşamayı kullanmıyorum çünkü gijonumda hafif bir eğrilik olduğunu düşünüyorum. Eğer kendi kullandığınız gijonun tamamen düz olduğunu düşünüyorsanız aşağıda tarif edeceğim aşamayı gerçekleştirebilirsiniz. Gijonu Sigma 3D'nin üst iskeletine sabitlemek bu aşamanın ana hedefi. Bu sayede alttan kaplin, üstten ise diğer parça gijonu  tutarak düz bir inme-çıkma hareketinin gerçekleşmesini sağlayacak. Bahsettiğim parçaların resmi aşağıda görülüyor:


Bu gülen yüzün gözlerini iki adet plastik parça (Z sabitleyiciler) ve ortalarında yer alan 608 nolu rulmandan meydana geliyor. Ayrıca profile monte edebilmek için M5 kare somun ve M5x10 imbuslara ihtiyacımız var. Bir de bu resimde görmediğimiz M8 somunlar gerekiyor. Montajı aşağıdaki şekilde gerçekleştireceğiz:


Motor ile gijonun aynı hizada olduklarından emin olduktan sonra gijonun üstte kalan kısmına komşu profillere ikişer adet kare somun yerleştiriyoruz. Bunu takiben gijonumuza 1 adet M8 somun vidalayacağız. Eğer bulabilirseniz M8 normal somun yerine fiberli somun kullanabilirsiniz. Eğer fiberli somun bulamazsanız normal somun kullanın ancak son konumuna geldiğinde dönmemesi gerektiğinden yapıştırıcı ile sabitlenmesi gerekecek (bu amaçla ABS suyu da kullanabilirsiniz). Somunu yerleştirdikten sonra üstüne Z sabitleyiciyi yerleştiriyoruz:


Z sabitleyiciyi vidaladıktan sonra yine bir M8 somunu gijona vidalıyoruz. Bu iki M8 (veya fiberli M8) somunun kullanım amacı rulman ile gijonun daha sık bir şekilde bağlanmalarını sağlamak ve bu sayede dönüş aksındaki olası küçük kaymaları önlemek. Ben şu anda bu parçayı kullanmadığımdan son halini şematik resimlerden göstereceğim:


Yukarıdaki resim alttaki M8 somunun yerini gösteriyor. Aşağıdaki resim ise üsttekini göstermekte:


Peki ben hangi sebeple şu anda bu parçaları kullanmıyorum? Eğer gijonunuzda bir eğrilik varsa ve siz çok sağlam bir şekilde üstten ve alttan gijonu sabitlerseniz, bu kısımlarda kesinlikle bir yalpalama görmüyorsunuz, yani yöntem o bölgedeki yalpalamayı çok güzel engelliyor ama gijon hala eğri olduğundan, yalpalama doğrudan gijonun orta kısımlarına doğru yer değiştiriyor. Açıkcası gijonun orta kısmları, uç kısmına göre baskı kalitesi açısından çok daha önemli. Eğer yalpalamanız ortada çok belirginse, baskınızda "z-wobble" adı verilen periyodik çizgilenme kusurunu çok daha belirgin olarak göreceksiniz demektir (bu konudan ilerde bahsedeceğim). O yüzden ben bu parçayı kullanmıyorum. Tabii ideal çözüm tamamen düz bir gijon ile bu işlemi gerçekleştirmek ve o durumda parçayı kullanmakta bir sakınca olmayacaktır.

Bağlantılarımızı gerçekleştirdikten sonra tamamen düz bir aksa sahip olduğumuzu kontrol etmemiz gerekiyor. Yani gijonu el ile çevirdiğimizde, 8 çizmemesi gerekiyor. Kendi eksenine dönmüyorsa, yalpalama yapıyorsa, gijon veya motor mili eğri olabilir veya Z eksenini yukarıdan stabilize eden parçalar ile motor aynı eksen üzerinde olmayabilir. Bu durumda hatayı düzeltmek gerekiyor. Burada her ne kadar 1 paragrafta bu sorunu özetlediysem de aslında cihaz montajı sonrasında ince ayar aşamasında bu bölge ile epeyi oynamamız gerekebileceğini aklımızda tutmamız gerekiyor.

Ana konumuz olan gijon-mil bağlantısını gerçekleştirdikten sonra ek bir iş daha yaparak bu aşamamızı bitireceğiz. Sol tarafta yer alan Z asansöründe, X aksını hareket ettirmek için kullanılan bir motorumuz var bildiğiniz gibi. Bu motorun montajını gerçekleştirmemiz gerekiyor. Motoru flanşına M3x10'luk somunlarla tutturacağız:


Ayrıca motor miline GT2 kayışı bağlamak için kullanmamız gereken bir kasnağımız vardı, onu da bu aşamada yerine takıp M3x6'lık setskur ile sıkıştırabiliriz:


İsterseniz cihazımızın son halini görelim:


Bir sonraki montaj yazımızda Y ekseni tablasını yerine monte edeceğiz .....

11 Haziran 2014 Çarşamba

Montaj aşamaları, üçüncü adım: Y motorunun montajı

Bundan önceki montaj aşaması yazılarımda ana iskeletin montajı ve yazıcımızın hareketli parçalarının üzerlerinde hareket edecekleri Z ve Y millerinin montajından bahsetmiştim. Bu aşamalardan sonra bir süre yazılarıma ara verdim çünkü cihazın montajı ile blogu eş zamanlı yazmanın getirdiği bir problemi fark ettim. Montajı yaparken birkaç adım sonrasında ne yapılacağı hakkında tabii ki genel bir fikrim var ancak bazı detayları insan ileriki aşamalara geçtikten sonra fark ediyor. İlk başta çok mantıklı gibi görünen veya dikkat çekmeyen bir nokta 4-5 adım sonra sorun olabiliyor. O sebeple montajın tümünü bitirip çalışır vaziyette bir cihaz oluşturduktan sonra bloga devam etmenin çok daha faydalı olabileceğini düşündüm. Şu anda bu amacıma ulaştım ve artık baskı alabiliyorum. Baskı almaya başlayınca kalibrasyon aşamalarının da ne kadar önemli olduklarını ve aslında ne kadar çok vakit alabileceğini kavradım. Şu an bu konu ile uğraşıyorum ancak montaj aşamalarından bahsetmek için önümde bir engel kalmadı ve bu sebeple bloga devam edebilirim.

Bu aşamamızda Y arabasını kontrol eden stepper motoru ve motorun çevireceği kayışı taşıyacak olan kasnak (İngilizce'si pulley) ve idler adı verilen kısımların montajını gerçekleştireceğiz.  Motorlarla ilgili genel bilgiyi daha önce vermiştim ama kullandığımız motorların stepper adı verilen motor tipinden olduklarını tekrar hatırlatayım. Bir motor, bildiğiniz gibi bir dönüş hareketi yapar. Eğer bir vantilatör yapmak istiyorsak dönüş hareketi işimize doğrudan yarayacaktır ancak doğrusal bir harekete ihtiyacımız varsa (mesela bir cismin sağa-sola doğru gitmesi gibi) dönme hareketini çizgisel bir harekete çevirmemiz gerekecektir. Bu iş için kayışlardan faydalanılmaktadır. Her ne kadar montajımızın bu aşamasında kayışları yerleştirmeyecek olsak da, onları için önemli olan iki parçayı (pulley ve idler) monte edeceğimizden bu konuda kayış sisteminden bahsetmenin uygun olabileceğini düşündüm.

Şimdi isterseniz kitimizin içerisindeki kayışların ve bağlantı elemanlarının resmini görelim:

  
Elimden geldiğince sempatik bir poz vermelerini sağlamaya çalıştım :) Kitin içerisinde iki tane kayışımız mevcut. Bu kayışların İngilizce isimleri "timing belt", yani "zamanlama kayışı" diye geçiyor ancak bu isim bir genelleme. Daha spesifik bir isimleri daha var: GT2 kayış. Yakından baktığımız zaman kayışın üstünde dişler olduğunu görüyoruz. GT2'nin 2'si milimetre cinsinden kayışın diş aralığını gösteriyor, yani kayıştaki iki diş arasında 2 mm mesafe var. GT'nin açılımını araştırdım ancak tam olarak bunu belirten bir kaynak bulamadım. Yalnız şunu söyleyebilirim ki, GT, bu kayışları dünya çapında üreten bir firma olan Gates firması tarafından tescillenmiş bir isim (muhtemelen Gates Timing Belt kelimelerinin ilk ikisi kısaltılarak bulunmuştur diye speküle edebilirim). Kayışa yakından bakarsak yapısını daha net görebiliriz:


Yukarıdaki resmi Gates firmasının kataloğundan aldım. Kayışın yapısını gösteriyor. İç yapısında lif lif görülen kısım fiberglas gibi gerilmeye dayanıklı bir maddeden yapılıyor ve kayışın kopmasını engelliyor. Dıştaki koyu renkli kısımlar ise kauçuk, poliüretan veya neopren gibi maddelerden yapılıyor. Bu sayede dişliler ile iyi bir bağlantı kurması sağlanıyor. Kitimizin içerisinde iki tane kayış var. Bunlardan bir tanesi X arabasını, diğeri ise Y arabasını hareket ettiriyor. X arabasını hareket ettiren kayış daha uzun.

Kayışların iş görebilmeleri için motora bağlanmaları gerek. Bu amaçla motorun miline bir kasnak yerleştiriliyor. Bu kasnağa GT2 kasnağı (İngilizcesi GT2 pulley) adı veriliyor. Tabii ki diş aralıkları GT2 kayışa uygun bir şekilde imal ediliyor. Aşağıda GT2 kasnağının resmini görebiliriz:

 
Kasnağın üst kısmında dişlilerin girecekleri olukları görüyoruz. Bu oluklardan 20 tane mevcut (her aralık 2 mm olduğundan kasnağın çevresi 40 mm oluyor) . Alt kısmında ise iki tane M3x6 mm setskur (cıvatalar bölümünde bahsetmiştik ama tekrar hatırlatayım, setskur (veya orjinal ismiyle "set screw") kafası kesilmiş bir cıvata formu ve amacı bir cismi başka bir cismin içinde yükselti oluşturmadan tutmak) mevcut. Bu setskurlar ile kasnak motor miline bağlanacak. Bu bağlantı sağlam olmazsa motor kayışı çeviremez. Bağlantı için ince bir alyan anahtarı kullanabileceğimizi de hatırlayalım.
Peki kayışı kasnağa geçirdik ama kayışın karşı ucunu nereye yerleştireceğiz? Bu iş için tasarımcılarımız İngilizce "idler" adı verilen parçayı kullanmışlar. İdler kelimesi boş boş duran gibi bir anlam taşıyor. Aslında Türkçe güzel bir tercümesi var, "avare kasnak" diye çevrilmiş. Aşağıda Y arabası için kullanacağımız avare kasnağın resmi mevcut:


Bu parça kit içerisinde hazır monte olarak gelmekte, o sebeple detayına çok girmiyorum ancak içerisinde mevcut olan rulman sayesinde döndüğünü belirtebilirim. X arabasında da avare kasnağa ihtiyacımız var, o da şu şekilde tasarlanmış:


Plastik parçalar konulu yazıdan hatırlarsanız, yukarıdaki parça sağ taraftaki Z asansörüydü. Onun solunda idler'ı görebiliyoruz.

Şimdi isterseniz esas konumuz olan motor montajına geçelim. Bu aşamada ihtiyacımız olan parçaları toplu halde görelim:


Bu resimde ortada yer alan beyaz plastik parçanın adının flanş olduğunu hatırlatayım (ilgili bölüme bakabilirsiniz). Flanş, motoru sigma profile bağlamamızı sağlayacak olan parça. Motoru flanşa bağlayabilmek için 4 adet M3x10 inbus cıvata gerekiyor. Flanşı sigma profile M5x10 inbuslar ile bağlayacağız. İdler'ın monte olduğu plastik parça da sigma profile M5x10 inbus ile bağlanıyor. Şimdi bağlantıları yapalım:


Öncelikle flanşı motorun üstüne geçiriyoruz. Motorun kablo bağlantısı kurulacak girişi yukarıdaki resimdeki gibi yönlendirilebilir veya sola doğru bakabilir, çok önemli değil. Daha sonra M3x10 cıvatalarımızı yerleştiriyoruz:


Şimdi yine hassas noktalardan birine geldik: Motorun sigma profilde doğru yere yerleştirilmesi. Ayrıca avare kasnak da tam bunun karşısında olmalı. Aşağıdaki resim bize gerekli olan mesafeleri gösteriyor:


Motorun flanşının kenarı, arkadaki sigma profilin dış yüzünden 87,5 mm mesafeye gelecek şekilde yerleştirilirken, avare kasnak 110,5 mm'ye yerleştirilecek. Aşağıdaki resimde motorun doğru konumu izleniyor:


Aşağıdaki diğer resimde ise avare kasnağın konumu izleniyor:


Bu noktada istersek GT2 kasnağı da yerleştirebiliriz ama henüz çok fazla sıkıştırmamak gerekiyor, kayışı bağlarken ayarlamak gerekebilir:


Motoru monte ettikten sonra bir şey fark ettim, o da motorun havada asılı durduğuydu:


Bu durum bana biraz garip gelmişti. Motorun ağırlığı flanşı esnetir mi diye çekindiğimden tasarımcıya bu durumu sordum, bir sorun teşkil etmeyeceğini bildirdi. Dolayısıyla önemli bir problem değil.

Motor ve idler monte edildikten sonra kitimiz nasıl görünüyor diye bakalım:


Böylece bir aşamayı daha geride bırakmış oluyoruz. Bu noktada kitin montajını bitirdikten sonra karşılaştığım bir problemden bahsetmek istiyorum. Montaj bitince fark ettim ki Y motorunun mili Y arabasına çarpıyor. Normalde temas etmemesi gerekiyormuş ama nedense bende ediyordu:


Sadece milimetrik bir yükselti var ama cihazın çalışmasında soruna yol açabilir. Bu durumu düzeltmek için, flanşı motora bağlayan cıvataların plastiğin altında kalan kısımlarına birer adet M3 somun ekledim. Bu sayede motor (ve mili) alçalmış oldu (normalde böyle bir şey gerekmiyor,ben neden benimkinde gerekti tam çözemedim):


Bir sonraki yazımızda artık Z asansörünün montajına başlayacağız....

28 Mayıs 2014 Çarşamba

Kit içeriğini tanıyalım: Motorlar

Parçaları tanıttığım önceki yazılarımda sigma profillerden, bağlantı elemanlarından (cıvata-somun),  plastik parçalardan, ve miller, gijonlar, rulmalardan bahsetmiştim. Bu yazımda, montajdaki bir sonraki aşamamız olan Y ekseni motorunu yerine yerleştirme aşamasından önce, biraz motorlar üstüne konuşmanın faydalı olabileceğini düşünüyorum. Motorlar 3 boyutlu yazıcımızda en önemli parçalar arasındalar. İsterseniz kit içerisinde kaç tane motor bulunduğunu ve ne işe yaradıklarını hızlıca gözden geçirelim. Kutuda 4 tane bağımsız motor var, bir tanesi de ekstruderin üzerine önceden monte edilmiş halde geliyor. Yani toplamda 5 motorumuz var. Aşağıdaki resimde bir yere bağlı olmayan motorları görüyoruz:


Aşağıdaki resimde ise esktrudere bağlı olan motor var:


Yukarıdaki resme dikkatle bakarsak, motorun arka tarafında bir etiket olduğunu görüyoruz. Etiketin üst kısmında "STEPPER" kelimesi dikkatimizi çekiyor. Bu kelime, motorumuzun bir stepper motor olduğunu belirtiyor. Peki nedir stepper motor? Başka hangi tür motorlar mevcut?

Aslında motorların hepsi basit bir mantık ile çalışıyorlar. Bu mantık, lise fiziğinden hatırlayabileceğimiz bir prensibe bağlı: Bir bölgeden elektrik akımı geçerse, akım yönüne dik bir manyetik alan oluşur (Faraday kanunuydu yanlış hatırlamıyorsam). Bu manyetik alan, metal bir şaftı çevirmek için kullanılabilir. Bu prensiple çalışan cihazlara motor adı verilir. Temel olarak hobi elektroniğinde kullanılabilecek 3 tip motor mevcuttur:

1) DC motor
2) Servo motor
3) Stepper motor

Bu kelimeler açıkcası bana çok fazla bir şey ifade etmiyordu. Servo motoru özellikle robot kitler veya uzaktan kumandalı uçaklar ile ilgilenenler duymuş olabilir, ben maketlerle ilgilenen bir arkadaşımın bu tip motorlardan bahsettiğini duymuştum. Internette araştırıp ne olduklarını ve farklarını taradım. İşte bulabildiğim bilgiler:

1) DC Motor:

En basit motor formu diyebiliriz. Ayrıca en ucuzu. DC, "Direct Current" yani "Doğru Akım" demek.  İç yapısında genelde 2 veya daha fazla sabit doğal mıknatıs ve merkezde bir elektromıknatıs var. Doğal mıknatıslar zıt polaritede (yani birinin pozitif, diğerinin negatif yüzü içe bakıyor). Elektromıknatısa, doğal mıknatıslara komşu yüzleri aynı polaritede olacak şekilde elektrik verildiğinde (yani + tarafı dönük olan doğal mıknatısa bakan yüz + polarite kazandığında) eş yükler birbirini ittiklerinden birbirlerinden uzaklaşmaya çalışıyorlar. Bu durum bir dönme hareketi başlatıyor. Hareketin sürebilmesi için elektromıknatıstaki akımın yönü tersine çevriliyor ve tekrar eş yüklerin birbirleri ile karşılaşmaları sağlanıyor. Bu sayede motor sürekli dönüyor. Aşağıdaki resimde bir DC motor var:


Bu tip motorlar kullanımı en kolay motorlar diyebiliriz. Sadece iki tane kablolarının olması da bu durumu ispat eden bir özellik. Ancak kolay kullanılabilir olmaları, kolay kontrol edilebildikleri anlamına gelmiyor. Bu tip motorların ne kadar dönüş yaptıklarını (kaç derece döndüklerini) motorun kendisi hesaplayamıyor. Mutlaka ek bir devre ile bunun sağlanması gerekiyor. Ayrıca çoğu zaman yeterli torka sahip değiller. Ayrıca çok iyi bir standardizasyonları yok. Yani isteyen üretici, kendi keyfine uygun şekilde motor dizaynı yapabiliyor. Şekil standart olmadığından, bir tasarıma eklenmeleri daha zor (tasarımcının kullandığı motor, sizin satın aldığınız motora benzemiyorsa, onu kullanamayabilirsiniz). Kontrol edilmeleri zor olduğundan genellikle üç boyutlu yazıcı gibi hassas kontrol isteyen aletlerde kullanılmıyorlar.

2) Servo motor:

Servo kelimesi Latince "servus" tan geliyor ve esir/hizmet eden anlamını taşıyor. Servolar daha önce de belirttiğim gibi hobi elektroniğinde, özellikle de robot ve uzaktan kumandalı uçak tasarımında çok sık kullanılan motor tipleri. Aşağıda bu amaçla kullanılan bir servo motorun resmi mevcut:


Servoların diğer motorlara göre en önemli farkları, ne kadar (kaç derece) hareket ettiklerini bilmelerini sağlayan bir geri-bildirim (feed-back) mekanizmasına sahip olmaları. O anki kesin pozisyonlarını hesaplayabiliyorlar ve kendilerine söylenen pozisyona gidebiliyorlar. Bu amaçla DC motorlardakine ek olarak bir kabloları daha var ve bu kablo üzerinden pozisyon sinyallerini alıyorlar (bu kabloya sinyal kablosu veya PWM kablosu deniyor. PWM, Pulse Width Modulation demek ve analog bir sinyali, dijital olarak taklit edebilmek için kullanılan bir yöntem). Servolar hassas kontrol gerektiren işler için yapılmışlar ve eş boyutlu stepper motorlara kıyasla daha yüksek torka sahipler (tork, bir motorun çevirme gücü olarak tarif edilebilir). 3 Boyutlu yazıcılarda genellikle servoların kullanıldığını görmüyoruz. Bunun bazı sebepleri var. Birincisi, yavaş hareket gerektiren işlerde, çok güçlü tork gerekmediğinde, stepperlar da aynı işi görüyorlar ve stepperlar çok daha ucuzlar (servolar daha komplike makineler ve bu yüzden pahalılar). Yine de bazı projelerde bazı tasarımcılar servo kullanmışlar, yani imkansız değil. Ancak modifiye edilmeleri gerekiyor.

3) Stepper motorlar:

Stepper motor, özel bir motor tipi. DC motorlar kadar kontrolsüz değiller, yani istenilen bir dereceye çevrilebiliyorlar ve bu çevirme işi adım adım (step) yapılıyor. Adı da buradan geliyor. Bu motoru elinizle çevirmek isterseniz bu adımlı yapılarını hissedebilirsiniz. Genellikle üç boyutlu yazıcılarda stepperlar kullanılıyor. Aşağıda bir stepper motorun resmi var:


Kablo sayımızın 4'e çıktığı dikkatinizi çekmiş olabilir. RepRap projelerinde kullanılan stepper motorların her bir uyarıda dönüş miktarları 1.8 derece. Yani her bir adımını 1.8 derece gibi düşünebiliriz. Motoru sola doğru 360 derece döndürmeyi istediğimiz zaman, o yöne dönmeyi sağlayacak 200 tane elektrik pulsu almaları gerekiyor (200x1.8 = 360). Bu pulsun frekansı (yani saniyede kaç tane puls gönderildiği) motorun hızını ayarlıyor (1 saniyede 200 puls verildiğinde, 10 saniyede 200 puls verilmesine göre daha hızlı dönüyor). 3 Boyutlu yazıcılar, bundan daha hassas bir kontrol mekanizmasına ihtiyaç duyduklarından, microstepping denen bir yöntemle kontrol ediliyorlar. Microstepping, yukarıda belirttiğimiz 1.8 derece'den daha küçük açılarla dönüş işleminin yapılabilmesini sağlıyor. Yazıcımız 1/16 microstepping modunda kullanılıyor ve bu sayede bir tur 200 yerine, 200x16=3200 stepe bölünmüş oluyor. Bu, çok daha hassas bir kontrol sağlıyor ancak bunun da bir bedeli var, o da tork kaybı. Normal modda (1 turun 200 step olduğu) torka %100 dersek, 1/16 mikrostep modunda tork % 9.8'e düşüyor. Bu çok ciddi bir kayıp ama muhtemelen üç boyutlu yazıcılar çok ağır yükler altında çalışmadıklarından çok da önemli değil.

Stepper motorların servo motorlara göre bazı farkları var. En önemli fark, stepper motorların o anki pozisyonlarını bilmelerini sağlayan bir mekanizmalarının bulunmaması. Bir servoya 36 derece sola dön gibi bir komut verdiğinizde, içerisinde yer alan kontrol mekanizması kaç derece dönüş yaptığını anlayabiliyor. Eğer 36 yerine 34 derece dönmüş ise bunu düzeltiyor. Stepper motor ise konumundan haberdar değil. Stepper'a aynı komutu, yani 36 derece sola dön komutunu, verirsek stepperın kontrol devresi 36 derece dönmek için normal modda 36/1.8= 20 step'lik dönüş yapması (microsteppingde 320 step) gerektiğini hesaplayıp bunu motora iletiyor. Motor da 20 adım dönmeye çalışıyor. Çalışıyor diyorum, çünkü örneğin ağır bir yük altında ise bir veya daha fazla adımı kaçırabilme olasılığı mevcut. Bu durumda 20 adım dön komutu almasına rağmen 18 adım dönüyor ve bundan da haberdar olmuyor. Yani çok hassas kontrol gerektiren işler için stepper problemli olabilir.Başka bir fark da stepper motorların o anda bulundukları konumu sabit tutabilmek için enerjiye ihtiyaç duymaları. Servolar buna ihtiyaç duymuyor, emredilen pozisyona gelince otomatik olarak o pozisyonda kilitli kalıyorlar. Stepper konumunu sabit tutmak için sürekli bir elektrik yükü altında kaldığından servoya göre daha çok ısınıyor.

Stepperlar ile ilgili güzel bir nokta, çoğunlukla endüstriyel kullanım amacıyla tasarlanmış olduklarından çok iyi standardize edilmiş olmaları. Stepperlar için standardizasyon koşullarını "National Electrical Manufacturers Association" adı verilen Amerika'lı bir cemiyet belirliyor. Bu cemiyetin baş harfleri kullanılarak oluşturulan NEMA kısaltması motorların isimlendirilmesinde kullanılıyor. RepRap projelerinde genellikle NEMA 17 motorlar kullanılıyor ama NEMA 24'ün de kullanıldığı projeler var. 17 rakamı motorun ön yüzünün bir kenarının inç biriminden uzunluğunun 10 ile çarpılmış hali. Yani bu motorun bir kenarı 1.7 inç (yaklaşık 43 mm) uzunluğa sahip. Aşağıdaki resmi Internet'te robot malzemeleri satan bir dükkanın web sitesinden aldım:


Motorun NEMA rakamı yükseldikçe motor daha güçlü ama daha ağır hale geliyor. Genel olarak tasarımcılar NEMA 17'nin üç boyutlu yazıcılar için uygun tork/ağırlık oranını sağladığını düşündüklerinden bunu kullanıyorlar.

Motorlarımızı da bu şekilde tanıtmış olduk. Bir sonraki aşamada motor montajımızdan bahsedeceğiz.